Improving reinforcement learning by using sequence trees
نویسندگان
چکیده
منابع مشابه
Feature Reinforcement Learning using Looping Suffix Trees
There has recently been much interest in history-based methods using suffix trees to solve POMDPs. However, these suffix trees cannot efficiently represent environments that have long-term dependencies. We extend the recently introduced CTΦMDP algorithm to the space of looping suffix trees which have previously only been used in solving deterministic POMDPs. The resulting algorithm replicates r...
متن کاملGeneration of regression trees using reinforcement learning
We present a novel methodology for regression trees generation that uses the reinforcement learning frame for learning efficient regression trees. We describe the basic variant of such a methodology that uses the Monte-Carlo method to explore the space of possible regression trees. Comparison with other methods of regression is performed and evaluated. Our algorithm is implemented as a software...
متن کاملImproving Strategic Play in Shogi by Using Move Sequence Trees
The main weakness of shogi programs is considered to be in the opening and the middle game. Deep search is not enough to cover the lack of strategic understanding, so most strong shogi programs use a hill-climbing approach to build castle and assault formations. The problem of a hill-climbing approach is that if the final result of two different paths is the same, then the final score will also...
متن کاملReinforcement Learning Policy Approximation by Behavior Trees
Traditionally a Reinforcement Learning (RL) policy is stored in a lookup table. From such a table it is difficult to observe the behavioral logic or manually adjust this logic post-learning is difficult. This paper shows how behavioral logic of a RL controller is presented in an insightful manner and can be adjusted using the Behavior Tree (BT) framework. It shows a method to approximate an RL ...
متن کاملImproving Reinforcement Learning by Using Case Based Heuristics
This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and Reinforcement Learning (RL) techniques. This approach, called Case Based Heuristically Accelerated Reinforcement Learning (CB-HARL), builds upon an emerging technique, the Heuristic Accelerated Reinforcement Learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2010
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-010-5182-y